## AHMES SECONDARY SCHOOL <br> FORM THREE HOLIDAY PACKAGE DECEMBER 2021 <br> BASIC MATHEMATICS

## COORDINATE GEOMETRY

1. Find the equations of two lines through point $(-2,5)$, one parallel and the other perpendicular, to the line $3 x-y=8$.
2. Find the equation of a line joining point $(2,-5)$ and the mid-point of line $A B$, where $A(5,8)$ and (7, -2).
3. Find the equation of a line which is a perpendicular bisector of a line segment joining points (5, $8)$ and (3, -4).
4. Determine the coordinates of the point $\mathrm{P}(x, y)$ on the y -axis such that the line joining it to thepoint $(3,-1)$ forms a right angle with the line through the points $(3,-1)$ and $(-5,-5)$.

## THE EARH AS SPHERE

5. An aeroplane from point $A\left(A\left(10^{\circ} S, 28^{\circ} E\right)\right.$ flies 1200 km due North to point $B$ and then 1500 km due West to point C . What are the locations of the points B and C ?
6. A ship from port $\mathrm{A}\left(5^{\circ} \mathrm{S}, 20^{\circ} \mathrm{W}\right)$ sails to port $\mathrm{B}\left(5^{\circ} \mathrm{S}, 12^{\circ} \mathrm{E}\right)$ and finally to port $\mathrm{C}\left(35^{\circ} \mathrm{N}, 12^{\circ} \mathrm{E}\right)$. What is the total distance for the whole journey?
7. The locations of the towns A and B are $\left(25^{\circ} \mathrm{N}, 15^{\circ} \mathrm{E}\right)$ and $\left(25^{\circ} \mathrm{N}, 34^{\circ} \mathrm{E}\right)$ respectively. Find the distance between A and B along the small circle in both km and nm .
8. Three towns, $\mathrm{P}, \mathrm{Q}$, and R are on the small latitude, $20^{\circ} \mathrm{N}$ with Town Q at longitude $10^{\circ} \mathrm{E}$ between Towns $P$ and R. Find the longitudes of $P$ and $R$ if the distance between $P$ and Q is 1482 km and that between Q and R is 926 km .
9. A ship sails from Pemba $\left(4.5^{\circ} \mathrm{S}, 39.5^{\circ} \mathrm{E}\right)$ to Dar es Salaam $\left(7.5^{\circ} \mathrm{S}, 39.5^{\circ} \mathrm{E}\right)$. If it leaves Pemba at $11: 30 \mathrm{am}$ and arrived in Dar es Salaam at 13:30 pm, use $\pi=\frac{22}{7}$ and Radius of the Earth $(\mathrm{R})=6370 \mathrm{~km}$ to find the speed of the ship in $\mathrm{km} / \mathrm{h}$.
10. A ship sails due North from point $A\left(0^{\circ}, 50^{\circ} \mathrm{E}\right)$ to point $B$ at the speed of $800 \mathrm{~km} / \mathrm{hr}$. If it leaves A at $08: 45$ am and arrived in B at 10:45 p.m. Find the position of point $\mathrm{B}\left(\pi=\frac{22}{7}\right.$ and $\left.\mathrm{RE}=6370 \mathrm{~km}\right)$.
11. Two places P and Q both on the parallel of latitude $26^{\circ} \mathrm{N}$ differ in longitudes by $40^{\circ}$. Find the distance between them along their parallel of latitude.
12. A ship sails northward from Dar es Salaam $\left(7^{\circ} \mathrm{S}, 39^{\circ} \mathrm{E}\right)$ to Tanga $\left(5^{\circ} \mathrm{S}, 39^{\circ} \mathrm{E}\right)$ at an average speed of 12 knots. If it leaves Dar es Salaam at 12:00 noon, when will it arrive at Tanga?
13. A plane is flying along latitude $60^{\circ} \mathrm{N}$ at $400 \mathrm{~km} / \mathrm{h}$. how long will it take to travel from point A (longitude $34^{\circ} 42^{\prime} \mathrm{N}$ ) to point B (longitude $34^{\circ} 42^{\prime} \mathrm{N}$ ). (Use Radius of the Earth $=6400 \mathrm{~km}, \pi=3.142$ ). ( 6.28 hours or 6 hours 16 minutes and 48 seconds)
14. A ship is steaming due to north at 25 Knot , is at position latitude $10^{\circ} 15^{\prime} \mathrm{N}$, longitude $50^{\circ} \mathrm{W}$ at $6: 00 \mathrm{am}$ on May 21. Find the position of the ship at 12:00 noon on may 23. ( $1 \mathrm{knot}=1$ nautical mile per hour)
15. How long will it take for plane travelling at $650 \mathrm{~km} / \mathrm{h}$ to travel between two points $\mathrm{A}\left(45^{\circ} \mathrm{N}, 33^{\circ} \mathrm{E}\right)$ to point B ( $45^{\circ} \mathrm{N}, 67^{\circ} \mathrm{W}$ ) Use Radius of the Earth $=6400 \mathrm{~km}, \pi=3.142$ ). ( 12 hours)

## STATISTICS

1. The following data represent the marks scored by 36 students at Tupendane Secondary School in mathematics examination.
$51,83,89,74,68,63,80,50,55,62,65,74,71,85,70,61,64,50,61,83,68,70,74,70,60,66$, $73,75,68,58,72,64,71,76,71$.
a. Prepare a frequency distribution table representing the data using class marks $52,57,62$, etc.
b. Calculate the mode (write your answer in one decimal place)
c. Draw a cumulative frequency curve (Ogive) and use it to estimate the median score.
2. The scores of a Mathematics test taken by 60 students were recorded as hereunder:

| 30 | 56 | 21 | 49 | 58 | 22 | 38 | 50 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 25 | 34 | 48 | 33 | 20 | 34 | 30 | 51 | 63 |
| 25 | 50 | 36 | 29 | 21 | 61 | 33 | 21 | 52 |
| 26 | 28 | 45 | 36 | 26 | 60 | 42 | 35 | 54 |
| 43 | 24 | 30 | 27 | 56 | 35 | 32 | 57 |  |
| 41 | 56 | 41 | 30 | 36 | 53 | 63 | 31 |  |
| 34 | 58 | 34 | 59 | 26 | 30 | 27 | 26 |  |

a. Prepare the frequency distribution table for the data by using the intervals $20-24,25-29$, etc.
b. Calculate the mean by using assumed mean method.
c. Calculate the median of the data.
d. Draw a histogram and use it to estimate the mode for the data.
3. The heights of some plants grown in a laboratory were recorded after 5 weeks. The results are shown in the following table:

| Height (cm) | Class mark (x) | Frequency (f) |
| :---: | :---: | :---: |
|  | 13 | 4 |
|  | 18 | 8 |
|  | 23 | 20 |
|  | 28 | 21 |
|  | 33 | 12 |
|  | 38 | 3 |

a. Prepare the frequency distribution table (use modal height $=26 \mathrm{~cm}$ )
b. Draw a cumulative frequency curve for the data.
c. Estimate the median from the graph.

## MATRICES

1. Given matrix $A=\left(\begin{array}{ll}2 & 1 \\ 3 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}-2 & 4 \\ 1 & -3\end{array}\right)$, compute:
a. $(A+B)^{2}$
b. $A^{2}+2 A B+B^{2}$
c. Hence, show that $(A+B)^{2} \neq A^{2}+2 A B+B^{2}$
2. Given matrix $A=\left(\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right)$ and $B=\left(\begin{array}{cc}-1 & -2 \\ 3 & 5\end{array}\right)$,
a. Find: $\mathrm{AB}, A^{-1}, B^{-1}$
b. Hence, show that $(\mathrm{AB})^{-1}=A^{-1} B^{-1}$
3. 
4. Find the matrix $A\left(\begin{array}{cc}1 & 0 \\ -1 & 3\end{array}\right)=\left(\begin{array}{cc}-1 & -3 \\ 3 & 6\end{array}\right)$
5. Find x , y and z from: $\left(\begin{array}{ll}x & 5 \\ 2 & 4\end{array}\right)+\left(\begin{array}{ll}2+y & z \\ 4-z & x\end{array}\right)=\left(\begin{array}{ll}8 & 5 \\ 6 & 3\end{array}\right)$
6. Given matrix $M=\left(\begin{array}{ll}-5 & 8 \\ -3 & 4\end{array}\right)$. Compute (a) $\left(M^{-1}\right)^{2}$
(b) $\left(M^{2}\right)^{-1}$
7. Find the value of a and b , if $\left(\begin{array}{cc}a & -3 \\ 7 & 2\end{array}\right)\binom{3}{b}=\binom{5}{-9}$
8. (a) Given matrix $\mathrm{A}=\left[\begin{array}{ll}1 & y \\ x & 5\end{array}\right]$ and Matrix $\mathrm{B}=\left[\begin{array}{cc}-5 & 3 \\ 2 & -1\end{array}\right]$. Find the value of x and y where matrix $B$ is an inverse of matrix $A$.
9. (a) For what value (s) of t will the matrix $\left(\begin{array}{cc}6 t & 1 \\ t+3 & t-1\end{array}\right)$ be singular?
(b) If $Q=\left(\begin{array}{ll}k & -4 \\ 3 & -2\end{array}\right)$, find the value of k given: $|Q|=5$
10. (a) Find the value of " $K$ " if matrix $\left[\begin{array}{cc}2(k+1) & k \\ 4 k-3 & 3+k\end{array}\right]$ is singular matrix.
11. Use the inverse matrix method to solve the following system of equations $\begin{gathered}2 x+3 y=12 \\ y-3 x=-7\end{gathered}$
12. Find the inverse of the matrix : $\left(\begin{array}{cc}5 & -2 \\ -1 & 1\end{array}\right)$ and hence solve the equation $\left\{\begin{array}{l}5 x-2 y=-2 \\ -x+y=-15\end{array}\right.$

Solve for x and y by using the determinant method if, $\mathrm{x}+3 \mathrm{y}-6=0$ and $3 \mathrm{x}-\mathrm{y}=8$.

## FUNCTIONS

1. Given the function $f(x)=2 x^{2}-x-6$. find the:
a. Axis of symmetry of $f(x)$
b. Turning point of $f(x)$
c. Maximum or minimum value of $f(x)$
d. The domain and range of $f(x)$
e. The x and y intercepts of $f(x)$
2. The function $f(x)$ is defined as follows:

$$
f(x)=\left\{\begin{array}{ccc}
1 & \text { if } & x \leq 0 \\
x^{2}+1 & \text { if } 0 & <x \leq 2 \\
5 & \text { if } & x \geq 2
\end{array}\right.
$$

a. Sketch the graph of $f(x)$
b. Use the graph to determine the domain and range of $f(x)$
c. Find $f(-3), f(1.5)$ and $f(7.5)$
3. If $f(x)=x^{2}-4$. Determine
a. Domain and range of $f(x)$
b. $f^{-1}(x)$
c. Calculate the x and y intercept of $y=x^{2}-4 x+3$

